
Reinforcement Learning and the Bandit Problem
(Sahit’s Guide To Stealing Hearts)

Sahit Chintalapudi

2/14/18



Outline

Problem Statement

Reinforcement Learning
Review of Q Learning
Deep Q Networks
Policy Gradient

Advances in Deep RL
Distributional RL
Recurrent Q Networks

Extra treats
Bandit Convex Optimization



The Bandit Problem

I Consider a slot machine with k arms.
I Each arm has a different distribution of returns.
I You don’t know which arm can give you highest expected

returns.
I Exploration v. Exploitation

I Who cares?
I Clinical trials, k possible treatments for a stream of patients.
I Contextual Bandits, where the world publishes some ”context

vector”, that we use to estimate return distributions.
I Forcing Valentine’s day puns into your talks



Q learning

I Our agent is trying to maximize reward by learning a function
that maps state, action pairs to utility

Q : S × A→ R
I Reward is kept very low everywhere but terminal states, the

agent has to figure out the value for other states

I With our function Q we can execute
a policy π by selecting the action that maps to the highest utility

argmax
a∈A

Q(S , a)



The Bellman Update

I We want to learn a function Q that reflects the reward at the
current state as well as (an expectation of) discounted future
rewards.

Q(s, a) = R(s, a) + γargmax
a∈A

Q(s ′, a)

I Build a Q function by simulating explorations of the state
space.

I Choose an action greedily but with some randomness

I Update Q with new information after every transition
Q(s, a) = Q(s, a) + α(R(s, a) + γ(argmax((s ′, a)− Q(s, a))



Q Networks

I Sounds like we already have a pretty good tool for learning
functions

I We want to learn a function that maps states to vectors in RA

I We don’t have to worry about discretization of the state space

I Loss given by MSE

L =
∑

(r + γmaxQ(s ′, a)− Q(s, a))2

I We can now advance this model with some ideas we’ve seen
before as well as some new ideas



Deep Q Networks

I Unsuprisingly, convolutions over the input give us a better
representation of space, so we see better results.

I Experience replay : Instead of training on consecutive
(s, a, r , s ′) examples, which drives the model into local minima
we randomly sample from old transitions in the training
process.

I Learning Atari games!

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Policy Gradients

I A new take on the RL problem: instead of trying to infer
utilities ”Q” and then execute a policy based on that,
iteratively learn a policy.

I Maximize the total of future expected Rewards

∇θE [Rt ] = E [∇θlogP(A)Rt ]



Policy Gradients in the wild
I Think of this as a supervised learning problem where the

labels are given by the eventual reward
I We’re searching directly in the ”policy space”, so this

approach tends to generalize better
I Let Ai be reward. Our loss takes the form:∑

i

Ai logp(yi |xi )

I Walking becomes easy

https://www.youtube.com/watch?v=hx_bgoTF7bs


Distributional RL
I Remember the Bellman equation? What we’re really saying is:

Qπ(s, a) = E[Rt ] = ER(s, a) + γEQ(s ′, a′)

I How can we make this better? Let Z be a probability
distribution we refer to as the value distribution:

Z (x , a) = R(x , a) + γZ (X ′,A′)

I The last step below is a projection of Z′ onto supports of Z



Why is learning the Distribution a good idea?

I Sometimes the distribution of rewards is multi-modal, an
expectation can’t capture this

I If we’re risk averse, we can decide to choose an action that
leads to a reward with lesser variance



Recurrent Q Networks

I Partially Observable Markov Decision Process (POMDP): We
don’t have the entire state

I RNNs give our network ”attention”

I insert an LSTM block after the last convolutional layer

I In the replay buffer, store experiences of a fixed length (as
opposed to just a transition)

I It’s pretty good at DOOM

https://www.youtube.com/watch?list=PLduGZax9wmiHg-XPFSgqGg8PEAV51q1FT&v=oo0TraGu6QY


Bandit Convex Optimization

I BCO is an interesting subfield of optimization that tries to
bound errors on algorithms solving the bandit problem

I We talk about bounds in terms of regret, where regret is given
by

Rn = maxi

n∑
t=1

Xi ,t −
n∑

t=1

XIt ,t



Citations 4 dayz/Further Reading

I Arthur Juliani’s Medium Posts on DQNs

I Felix Yu’s Blog Posts on Distribution RL/Policy Gradients

I Andrej Karpathy’s Post on Policy Gradient

I CS 294 at UC Berkeley

I Intel AI explaining DQNs

I Marc G Bellemare, Will Dabney, and Rémi Munos. A
distributional perspective on reinforcement learning.

I Sebastien Bubeck and Nicolo Cesa-Bianchi. Regret Analysis of
Stochastic and Nonstochastic Multi-armed Bandit Problems

https://medium.com/@awjuliani/simple-reinforcement-learning-with-tensorflow-part-0-q-learning-with-tables-and-neural-networks-d195264329d0
https://flyyufelix.github.io/2017/10/12/dqn-vs-pg.html
http://karpathy.github.io/2016/05/31/rl/
http://rll.berkeley.edu/deeprlcourse/
https://ai.intel.com/demystifying-deep-reinforcement-learning/

	Problem Statement
	Reinforcement Learning
	Review of Q Learning
	Deep Q Networks
	Policy Gradient

	Advances in Deep RL
	Distributional RL
	Recurrent Q Networks

	Extra treats
	Bandit Convex Optimization


